Developing Unbiased RNA Sequencing for Biothreat and Emerging Disease Detection

Signature Science, LLC: Kathleen Schulte, Amanda N. Scholz, Leah W. Allen, Matthew C. Murray, Krista L. Ternus, F. Curtis Hewitt, and Anthony D. Kappell*

INTRODUCTION

309

June 18, 2023

Background

- RNA viruses pose a significant global biothreat.
- Beyond the recent coronavirus pandemic, filoviruses, alphaviruses, and flaviviruses, among others, cause recurring outbreaks in the Americas and around the world.
- Untargeted, metagenomic sequence-based approaches that are unbiased are a potential solution in detecting novel viruses.
- Untargeted sequence-based approaches could lead to early detection of both previously characterized and novel threats RNA virus threats.¹
- Untargeted sequence-based approaches has the potential to serve as a hypothesis-free, single, and universal assay for diagnostics of known and novel infectious disease and Emerging Infectious Diseases (EIDs) directly from samples.²
- Single agnostic test reduces the need for serial testing against a list of suspected pathogens or culturing which can lead to delayed actionable results.
- Nanopore sequencing has the promise of allowing near realtime sequencing and detection.
- Nanopore sequencing for public health threats is well established and has been previously demonstrated.^{3–6}
- Targeted nanopore sequencing for viral detection in public health labs has been successful as part of the COVID-19 pandemic response.⁷

Study

- We have previously established a 6-plex (8 total) library preparation workflow for the untargeted, unbiased sequencing of RNA viruses from Viral Transport Media (VTM) and Human Plasma (ASM Microbe 2022)
- This study expands the evaluation of the final library preparation workflow. We also addressed the outstanding question of barcode binning with barcodes on both ends (both barcodes) is better than single end (single barcodes)

MATERIALS AND METHODS

Contrived Samples: Generated using pooled remnant VTM or plasma not associated with an infection and spiked with a pool of matri related viruses. These were then serial dilute into relevant matrix.

Remnant Samples (Real-world): Were obtained for related viruses used in the contrived samples

Controls: MS2 Phage was added to each sample at extraction as internal standard including in a phosphate-buffered saline bla sample. Green-fluorescent protein mRNA was used as a positive control for processes upstream of the extraction without MS2 Pha

Library Preparation Workflow

Ebola Virus

Contrived Samples within Clinical Matrices

LT1								Human Plasma	
rix		Media	Viral Transport Media			Human Plasma			
ted		Virus	Influenza A Virus (A/ Wisconsin/15/ 2009 (H3N2)	Human Respiratory Syncytial Virus (A 1998/3-2)	Human Coronaviurs (229E)	Zika Virus (MR 766)	Hepatitis A Virus (HM175/18f)	Yellow Fever Virus (17D)	Chikungunya Virus (181/25)
		BEI Cat#	NR-42007	NR-28529	NR-52726	NR-50065	NR-137	NR-116	NR-56523
		ID	InfA	RSV	229E	Zika	HepA	YF	Chik
		А	7.10	5.60	3.85	7.35	6.85	6.60	6.35
		В	6.10	4.60	2.85	6.35	5.85	5.60	5.35
	Load Levels	С	5.10	3.60	1.85	5.35	4.85	4.60	4.35
olank	LOG10 (TCID50	D	4.10	2.60	0.85	4.35	3.85	3.60	3.35
	per mL)	E	3.10	1.60	-0.15	3.35	2.85	2.60	2.35
S		F	2.10	0.60	-1.15	2.35	1.85	1.60	1.35
nage.		G	NA	NA	NA	1.35	0.85	0.60	0.35

RESULTS

Binning of Sequences Based on Barcodes on at Least One end (Single) or Both Ends (Both)

Mapping to GFP from Different Barcodes					
Sample	Single Barcode	Both Barcode	Reduction of Barcode Cross-talk		
GFP	173,105	120,911	NA		
NEG	1,054	39	96%		
Sample 1	1,130	72	94%		
Sample 2	815	37	95%		
Sample 3	940	80	91%		
Sample 4	1,359	136	90%		
Sample 5	1,534	98	94%		
Sample 6	764	70	91%		

Abbreviated Table of Clinical Remnant Samples

Example of Little to No Loss of Detection when usin on Both Ends Setting Compared to Single End Setti

VTM	RSV		InfA		229E	
Contrived Sample Viral Load	Single Barcode	Both Barcodes	Single Barcodes	Both Barcodes	Single Barcodes	Both Barcodes
Α	4/4	4/4	4/4	4/4	4/4	4/4
В	8/8	8/8	8/8	7/8	8/8	8/8
С	10/10	10/10	0/10	0/10	10/10	10/10
D	4/8	4/8	0/8	0/8	8/8	8/8
E	0/4	0/4	0/4	0/4	0/4	0/4
F	0/2	0/2	0/2	0/2	0/2	0/2

= All Replicates Detected = At Least One Detected = None Detected

Limit of Detection from Contrived Samples within Clinical Matrices

95% Probability	Both Ba	arcodes	Single B	Probit	
Organism	Logit Analysis*	Probit Analysis*	Logit Analysis*	Probit Analysis*	Difference
RSV	2.71	2.79	2.71	2.79	
InfA	5.65	5.72	6.14	6.17	0.45
229E	0.41	0.47	0.41	0.47	
Zika	3.42	3.41	3.42	3.41	
Chik	2.42	2.42	2.92	2.88	0.46
YF	3.03	3.00	3.17	3.14	0.14
HepA	4.52	4.50	4.52	4.50	

* LOG10 (TCID50 per mL)

Sample	Gold Standard	Organism of Assembly	SeqScreen Call	Modified Call	Stat	
Human	Genmark EPlex PCR	Streptococcus anginosus	Genus Present	Absent	FN	
metapneumovirus		Magnetospirillum gryphiswaldense MSR-1 v2	Genus Present	Absent	1	
		Streptococcus equi subsp. zooepidemicus Genus Present		Absent		
Parainfluenza IV	Genmark EPlex PCR	Human parainfluenza virus 4a	Genus Present	Present	TP	
Parainfluenza IV	Genmark EPlex PCR	Human parainfluenza virus 4a	Absent	Present	TP	
SARS-CoV-2	Gene Xpert Infinity	SARS coronavirus Tor2	Absent	Present	TP	
SARS-CoV-2	Gene Xpert Infinity	SARS coronavirus Tor2	Genus Present	Present	ТР	
		Carnobacterium maltaromaticum	Genus Present Absent		1	
		Corynebacterium rouxii	Genus Present	Absent	1	
SARS-CoV-2	Gene Xpert Infinity	SARS coronavirus Tor2	Genus Present	Present	ТР	
RSV	Biofire	NA	Absent	Absent	FN	
RSV	Biofire	Human orthopneumovirus	Genus Present	Present	TP	
		Streptococcus pneumoniae	Present	Absent		
RSV	Biofire	Respiratory syncytial virus	Present	Present	ТР	
		Human orthopneumovirus	Absent	Present		
Influenza A	Biofire	Influenza A virus (A/California/07/2009(H1N1))	Genus Present	Present	ТР	
		Cyclobacteriaceae bacterium	Genus Present	Absent	1	
Influenza A	Diasorin Integrated	Influenza A virus (A/California/07/2009(H1N1))	Absent	Present	ТР	
	Cycler	Streptococcus anginosus	Present	Absent	1	
Influenza A	Biofire	NA	Absent	Absent	FN	
Enterovirus	Diasorin Integrated	Rhinovirus A	Absent	Present	ТР	
Enterovirus	Diasorin Integrated	Rhinovirus A	Genus Present	Present	ТР	
Enterovirus	Diasorin Integrated	Rhinovirus A	Absent	Present	ТР	
	Cycler	Lactobacillus crispatus	Genus Present	Absent		
		Cutibacterium acnes HL096PA1	Present	Absent		
		Corynebacterium efficiens YS-314	Present	Absent		
Hepatis A	DiaSorin Liaison XL	NA	Absent	Absent	FN	
Hepatis A	DiaSorin Liaison XL	Salmonella enterica subsp. enterica serovar Typhimurium str. LT2	Absent	Present	FN/ FP	
Hepatis A	DiaSorin Liaison XL	Bacillus cereus	Genus Present	Absent	FN	
		Acinetobacter baumannii	Genus Present	Absent		

Modified Call is based on accepting ≥0.15 Breadth.Coverage and ≥1 Depth.Coverage as calculated by SeqScreen-Nano • TP: True Positive, FP: False Positive, FN: False Negative

512.533.2092 akappell@ signaturescience.com

ing	Barcodes
ting	J

CONCLUSIONS

- Best method identified was REPLI-g assisted Double-stranded cDNA synthesis as input into the Native Barcoding Kit and Ligation Sequencing Kit to generate an 8-plex with 6 samples and 2 controls.
- Sequencing library preparation takes between 10 to 16 hours, based on experience of analyst.
- Current limit of detection is greater than targeted PCR assays and near that of immuno-based assays.
- Detection limits appear to be associated with genome size and segmentation of the virus.
- Sensitivity is 0.5714 based on remnant samples with currently no detection of Human metapneumovirus and Hepatis A.
- Precision is 0.8571 including the common detection contaminants of Klebsiella pneumoniae and Escherichia coli O157:H7.
- F1 Score is 0.6857 based on remnant samples.
- We are continuing to sequence remnant samples to determine the limitations and associated statistics with this assay.

REFERENCES

- 1. N. Sapoval, et al. (2021) Hidden genomic diversity of SARS-CoV-2: implications for qRT-PCR diagnostics and transmission, Genome Res.
- 2. Y. Xu, et al. (2018) Detection of Viral Pathogens With Multiplex Nanopore MinION Sequencing: Be Careful With Cross-Talk, Front. M2017icrobiol. 9. (And Citations Within)
- F.C. Hewitt, et al. () Toward Rapid Sequenced-Based Detection and Characterization of Causative Agents of Bacteremia, BioRxiv. 162735.
- 4. H.P. McLaughlin, et al. (2020) Rapid Nanopore Whole-Genome Sequencing for Anthrax Emergency Preparedness, Emerg. Infect. Dis. 26 (2020) 358–361.
- 5. J.A. Russell, et al. (2018) Unbiased Strain-Typing of Arbovirus Directly from Mosquitoes Using Nanopore Sequencing: A Field-forward Biosurveillance Protocol, Sci. Rep. 8. 5417.
- 6. M.R. Lindberg, et al. (2016) A Comparison and Integration of MiSeq and MinION Platforms for Sequencing Single Source and Mixed Mitochondrial Genomes, PLOS ONE. 11. e0167600.
- CDCgov/SARS-CoV-2_Sequencing, Centers for Disease Control and Prevention, 2021. https://github.com/CDCgov/SARS-CoV-2_Sequencing
- 8. S.T. Calus (2018). NanoAmpli-Seq: a workflow for amplicon sequencing for mixed microbial communities on the nanopore sequencing platform. Gigascience, 7(12), giy140. [Workflow contains adapted figure]
- 9. A. Balaji et al. (2022). SeqScreen: accurate and sensitive functional screening of pathogenic sequences via ensemble learning. Genome Biology, 23(1), 133.
- 10. A. Balaji et al. (2023). SeqScreen-Nano: a computational platform for rapid, in-field characterization of previously unseen pathogens. bioRxiv, 2023-02.

ACKNOWLEDGEMENTS

This research was funded by Centers for Disease Control and Prevention under award numbers 75D30121C12250 and 75D30122C15359. Additionally, the development of SeqScreen and SeqScreen-Nano was funded through IARPA Award No. W911NF-17-2-0089. The view and conclusions contained herein are those of the authors and should not be interpreted as official policy or endorsement of the HHS, CDC, ODNI, IARPA, ARO or the US Government.