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Metagenomics is a powerful tool that allows researchers to gain insights 
into the taxonomic and functional content of complex microbial 
communities without the need for culturing. As metagenomics has 
expanded, there has been a corresponding increase in available 
taxonomic classification tools and reference databases to evaluate 
such sequences. However, positive calls at the strain, species, or genus 
levels may vary significantly among taxonomic classification tools. 
Furthermore, inconsistencies among the reference databases used by 
these tools can lead to false positives and/or false negatives, resulting in 
database-linked biases.

To characterize and address these gaps, we developed MetScale™ 
workflows to allow users to execute multiple open source metagenomic 
tools and reference databases at one time and to assist users in 
differentiating true positive from false positive signals. MetScale™ can 
run online or offline on an air-gapped system, and its workflows include 
tools for Illumina® read filtering, assembly, taxonomic classification, and 
functional inference. 

The MetScale™ final report summarizes the results for each sample 
analyzed and describes the species identified by different taxonomic 
classification tools and reference databases.

The Shakya synthetic metagenome18 is a constructed meta–
genome consisting of 64 fully sequenced bacteria, archeaea and 
fungi. Sequence data from this synthetic community has been 
used to assess the accuracy of taxonomic classification tools 
(e.g. McIntyre et al. 2017)19. MetScale™ incorporates the results 
of assembly, taxonomic, and functional classification tools into 
a single report. When compared to the known truth data, the 
value of combining multiple pipelines can be demonstrated.
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Figure 1: Flow chart of MetScale™ workflows. Results for each sample are 
combined into a single final report.

The accuracy and sensitivity of a taxonomic classifier is limited by 
the comprehensiveness of its reference database, but it is not always 
easy to see what organisms are present within different reference 
databases. The Database Query Tool (DQT) enables manual queries to 
assess the taxonomic composition of databases used by metagenomic 
classification tools. This allows users to explore if the absence of an 
identified species was likely a true negative, or if it was likely a false 
negative due to that species being absent from the reference database 
used with the taxonomic classification tool. MetScale™ implements the 
DQT with a compiled database generated from the default references 
for each of the classification tools. The database can be re-compiled 
with new or custom reference databases, if desired.
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Available Workflows:
Because MetScale is a workflow management system, 
it is able to incorporate multiple tools, generally 
divided into 5 categories:

1   Quality Control
MetScale incorporates read trimming, read QC 
and Kmer counting with Trimmomatic1, FastQC2, 
and Khmer3, respectively. Quality control data are 
consolidated into a single report using MultiQC⁴. 
Multiple parameters can be configured for each tool 
(trimming quality, minimum length, etc.)

2   Assembly
There are two main assembly tools implemented in 
MetScale: SPAdes⁵ and MEGAHIT⁶. Assembly quality 
can be checked with QUAST⁷/metaQUAST8, and 
reports are again incorporated into MultiQC reports, 
as well as individual reports.

3   Comparison
Assemblies can be compared with calculated Jaccard 
Indexes across all configured trimming and assembly 
parameters, to determine the level of difference 
between assembly methodologies. Comparisons are 
performed using Sourmash9.

4   Taxonomic Classification
Taxonomic classification is available in MetScale 
from 6 separate tools, Mash9, Kaiju10, Kraken211, 
KrakenUniq12, and MTSv13. MetScale can process reads 
and/or assembled contigs for each of these steps. For 
all tools, MetScale is configured to download selected 
database for analysis. (See DQT section)

5   Functional Classification
There are separate tools available within Functional 
Classification for Contigs and Read based 
classification. Functional genes can be predicted for 
contigs using either Prokka1⁴ or Abricate1⁵. Prokka 
functions by predicting open reading frames (ORF) 
and predicting function using a database search/
voting strategy for each ORF. Abricate screens for 
antibiotic resistance genes. Read based functional 
classification can be performed using either 
Humann31⁶ or SRST21⁷.
 
Data Gathering:
MetScale creates a final report by tying together all 
analyses that have been performed to generate a 
single HTML-based page allowing the user to navigate 
all results, as well as combining all taxonomic tool 
outputs into a single table to identify genera or 
species most commonly identified across analyses.
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Figure 2: Example output for Shakya dataset analyzed 
with Metscale™. The Krona plots above show the results 
of Kaiju classification of the assembled contigs of the 
same dataset, using either MetaSPAdes or MEGAHIT at 
the genus level. While the same species are identified 
in both analyses, the relative abundance varies, 
illustrating the value in utilizing multiple tools for each 
step in a pipeline.

Figure 4: Heatmap display of all bacterial members of Shakya dataset, including truth data. Shading is the same as Figure 3. White boxes 
indicate no support from that tool for the presence of species of interest. Use of the Database Query Tool (DQT) allows us to determine that 
the absence is due to the species not being present in the reference database used for those tools.

Figure 3: Signal graph generated from the MetScale™ analysis 
of the Shakya dataset. The top 8 species from each unique 
combination of parameters (in this case trimming at Q=2 or 
Q=30) are identified. This plot summarizes the outputs of all 
taxonomic classifiers run. Color of the circles indicates the
level of supporting evidence for that species.

Table 1: Rubric for classification of strength of a species signal from each of the 
classification tools implemented in MetScale™.
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