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Why Engineer Anything? 

▪ Humans are everywhere – why reinvent samples for R&D use?  

▪ Regulatory Oversight

▪ Protocol prep and approval, review, recruiting, and sample stability all create hurdles 
to the process

▪ Issues related to collection process – low diversity in sample set, slow process

▪ Sample variability

▪ Variability between individuals

▪ Variability within an individual

▪ Can we engineer artificial samples to improve the quantity and quality of human forensic 
research? 

▪ Can these work across key sample types of interest to the community? 

▪ Can these support emerging techniques (e.g., protein analysis)

▪ Can these replace human samples altogether? 
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hDNA Analysis from Shell Casings

▪ Gun violence is a significant issue 

▪ 1.2 firearms for every 1 person in the 

U.S.1

▪ 13,958 people died of firearm homicide 

in 20182

▪ Approximately 73% of all homicides 

involve firearms2

1Small Arms Survey - Small Arms Survey reveals: More than one billion firearms 

in the world. www.smallarmssurvey.org. Retrieved 14 February 2019.

210 Leading Causes of Injury Deaths by Age Group Highlighting Violence-

Related Injury Deaths, United States – 2018 (PDF). Injury Prevention & 

Control, CDC.
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hDNA Analysis from Shell Casings

▪ Shell casings present a hostile environment for 

DNA

▪ Touch (trace) deposition

▪ Sample age

• Time since loading

• Time since firing

▪ Heat and pressure during firing

▪ Metal ions and reactive chemical species

▪ Contamination

▪ Inhibitors (GSR)
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Optimized Shell Casing Collection Method

▪ Typical shell casing processing methods 

involve swabbing, soaking in a buffer, or 

a mix thereof

▪ Our validated method, Forensic 

Recovery of Identity from Shell Casings 

(FRISC™), utilizes soaking and swabbing

▪ We are engineering novel methods 

to allow simplified handling, reduced 

risk of GSR contamination, shorter 

processing time, and separate extraction 

of skin protein
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Experimental Overview

Enlisted three human 

donors to deposit 

touch samples on 

cartridges and load 

into decontaminated 

9mm magazines

Fired and collected 

shell casings at a 

local firing range 

(typically seven 

replicates per 

donor)

Collected samples using 

a standard swab method, 

SigSci’s validated 

FRISC™ method, and the 

Gen 2 version version of 

the FRISC™ protocol
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Shell Casing DNA Analysis 

▪ Total DNA yields comparable and not 

statistically significant across methods

▪ Complicated further by high quantity of 

outliers

▪ FRISC methods generally recover more 

total alleles than a swab-based approach

▪ FRISC produces CODIS-eligible profiles 

from fired shell casings 38% of the time 

with > 50% of samples suitable for 

comparison
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CE vs. NGS Analysis of Shell Casing Samples

• CE-based analysis shows better 
sensitivity across the 20 core 
CODIS loci

• Low DNA input seems to 
outweigh benefits from short 
amplicons for degraded DNA

• When sufficient DNA is available, 
sequencing produces significantly 
more genetic information

– ForenSeq DPMB

• Variability between replicates is 
extreme
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Our Solution: DNA Touch

▪ Standardized, simplified, scalable synthetic 

fingermarks

▪ Reduces deposition variability

▪ Permits quantitative calculation of DNA 

and protein yield 

▪ Enables greater statistical power during 

method development
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Artificial Print Composition

▪ Primary components of a fingermark:

▪ Sebaceous oils

▪ Eccrine secretions (e.g., sweat)

▪ Extracellular DNA

• Typically fragmented

• Utilize well-characterized, 

commercially available gDNA 

sources
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Comparison of Real and Artificial Touch Samples
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Artificial Print Composition

▪ Primary components of a fingermark:

▪ Sebaceous oils

▪ Eccrine secretions (e.g., sweat)

▪ Extracellular DNA

• Typically fragmented

• Utilize well-characterized, 

commercially available gDNA 

sources

▪ Keratinized epithelial cells 

• Typically anuclear

• Can be obtained from volunteers

or commercial biobanks
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Forensic Identification using Protein Polymorphisms

▪ Utilizes protein sequencing to 

identify underlying SNPs in 

coding regions for human 

identification

▪ Protein polymorphism profiles 

can be compared to each other 

or to whole genome 

sequencing data for 

identification

▪ Individual PR43 example
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Incorporation of Skin Cells

▪ Skin cells collected 

from the palms of 

volunteers using a 

PedEgg

▪ Cells homogenized and 

added for formulation 

at appropriate 

concentration

▪ Enables parallel protein 

analysis, if needed

▪ Must consider DNA

mixtures if applicable
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How to Turn Shell Casings Green

▪ Initial attempts to utilize DNA Touch 

on brass shell casings failed

▪ Apparent high levels of oxidation 

once artificial fingerprints had dried

▪ Attempts to recover DNA 

unsuccessful 

▪ Extremely low, if any, DNA yields 

from 10 ng artificial prints
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Rapid Drying to Improve DNA Recovery

▪ Can we minimize the time each sample spends 

exposed to the liquid stage of artificial 

fingerprint deposition? 

▪ Artificial fingerprints with 10 ng gDNA on 9mm 

shell casings

▪ Placed into a speedvac (rotor removed) 

immediately following deposition to rapidly dry 

the sample

▪ Collected and extracted DNA and compared 

with artificial prints left to dry in ambient 

conditions

▪ Likely due to reduction in ROS formation

▪ Improved DNA recovery and lower DI
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DNA Touch Print Pattern Visualization

▪ Artificial print DNA can be recovered from challenging surfaces

▪ No appreciable degradation across surfaces

▪ Recovery was surface variable
▪ More porous surfaces are a current limitation 

▪ Naked DNA shows especially poor compatibility with porous surfaces
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DNA Touch Print Pattern Visualization

▪ Tested various imaging dyes/techniques on glass & tape
▪ Cyanoacrylate fuming with fluorescent dyes (Rhodamine 6G/B)

▪ Ninhydrin

▪ Dusting powders (black & fluorescent)

▪ Print visualization successful on multiple surfaces

▪ Dusting powders failed to adhere
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Extraction from Adhesives

▪ Artificial prints were placed on 

multiple types of tape

▪ DNA collected and extracted 

by two analysts

▪ No-collection control 

processed in parallel (DNA 

Touch placed in tube)

▪ Method showed robust, 

consistent results and similar 

yields across 

analysts/replicates
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Synthetic Buccal Swabs

▪ Can we create realistic synthetic buccal swabs using 

human tissue culture? 

▪ Epithelial cells (A549)

▪ Artificial saliva

▪ Standard flocked swabs

▪ Multiple potential loading methods

▪ Precise loading of the swab tip with a known 

number of cells

▪ Direct swabbing of the plate to evaluate 

collection efficiency 

▪ Various potential uses

▪ Evaluation of collection tools

▪ Assessment of differential extractions

▪ Public health sample surrogates
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Synthetic Buccal/Nasal Swabs

▪ Recovery from collections of artificial 

samples closely resembles actual buccal 

swabs collected in previous validation 

studies

▪ Recovery amount can be modulated, and 

more or less artificial saliva can be used

▪ Considering variability in collection, 

artificial samples still show lower 

variability than human samples
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Conclusions

▪ Artificial samples successfully avoid additional regulatory steps and decrease 

variability associated with human samples

▪ Artificial samples do not perfectly recapitulate human signatures

▪ Relative performance must be evaluated on the matrix of interest

▪ Artificial samples are a supplement to, not a replacement for, human samples

▪ Goal is to dramatically reduce the number of human samples required for 

verification or validation
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Path Forward

▪ Continue to integrate artificial prints into R&D studies

▪ Improve and characterize artificial print samples across a wide range of matrices 

and conditions

▪ Metal, porous (paper, wood, etc.), and non-porous surfaces

▪ Consider stability of artificial prints vs. human samples over time or in 

challenging conditions (e.g., heat, direct sunlight)

▪ Go back in time and repeat all the relevant studies

▪ Highlights the need to develop accurate, synthetic standards now to position 

current and future studies for success
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