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Background: Inferring familial relationships

between individuals using genetic data is a common Shhon a - ]
practice in population genetics, medical genetics, and 7-
forensic genetic genealogy (FGG). Sequencing and i ‘“ ‘“ iyt I ' | |
microarray technology have enabled rapid profiling of =
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millions of single nucleotide polymorphisms (SNPs)
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with near-perfect accuracy. With these new methods, ;
investigators have improved on one of the most L[L [11 [L L L L IL IL [I_‘ :|n [11 [Il v ;
significant challenges in forensic analysis: attribution e = | 4
and identification of the source or close relatives of Fig 1: Pedigree structure for each of the simulations conducted. 0125 g 4 i i Unrelated
DNA samples from unknown donors. SNP-based Pedigrees were simulated using ped-sim. Relationships include parent-child |
Kinship analyses using genome-wide relatedness (1st degree), full sibling (1st degree), avuncular (2nd degree), grandparent- D oo
measures or identity-by-descent (IBD) segment grandchild (2nd degree), first cousin (3nd degree), great-great- =
approaches are commonly used in FGG analysis, but grandparent/child (4th degree), grand-avuncular (4th degree), second o
the impact of genotyping error and missing data on cousin (5th degree), third cousin, first cousin once removed, first cousin 0062501 .
these approaches typically seen in forensic samples twice removed, second cousin once removed, etc. | — - —
has not been fully characterized. Fig 4: Detected versus simulated kinship coefficient. X-axis shows the

Overall accuracy by population across different missingness and error levels aCtu_aI simulated ki_nShiP coeffifzi_ent (_COIOF_COde_d by truth relationship d_egree)'
Objective: The goal of this StUdy was to evaluate Red dashed line shows accuracy of guessing Y-axis shows the klnShIp .CoeffICIent inferred using KING (tOp), IBIS (mlddle),
the accuracy of genome-wide relatedness methods . err. 0% err: 1% err. 5% err 10% and Hap-IBD (bottom) using default parameters at different error and

_ | missingness levels for simulated relationships from GBR founders. Error

and IBD segment approaches for FGG in the presence gl | | BN N W BN N e W increases in panels going left-to-right. Missing data increase in panels top-to-
of challenges commonly encountered with for.enS|C 0501 4 bottom. This shows that for all methods error degrades the detected kinship
data: high level of dropout (low call rate) and increased 0.25- ° coefficient, with degradation most notable in high-error simulations (5-10%).
genotyping error. 0.001 Any error completely degrades hap-IBD’s ability to detect IBD segments using
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default parameters, and even small errors severely affect hap-IBD’s

1 | | B H H N N O B T R performance. IBIS is severely impacted by large error, while small amounts of
napEb error impact IBIS’s ability to accurately assess full siblings, which will share on
_ ] Bis average about 25% of the genome IBD2. The KING robust estimator suffers

the least performance degradation.
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Technical Approach: We simulated genome-
wide SNP genotyping data in large, complex pedigrees
where the true underlying relationships were known,
simulating genotyping error from 0-10% and missing
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commonly used microarray in FGG. We benchmarked 1B Population: GBR
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segment approaches. We developed an R package to XL ASW N . R F
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assist with benchmarking and analysis (below).
Fig 2: Overall classification accuracy using default parameters. Panels 021

show genotyping error increasing in panels left-to-right and missing data
rates increasing panels going top-to-bottom. Individual bars within each
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Results: When genotyping error is low, the IBD
segment methods outperformed genome-wide

_ _ panel show the classification accuracy within each simulated population. é 0.0 | R s ‘“;mm L = |
relatedness methods for close relationships and are This graphic shows roughly equivalent accuracy with zero error, but < . M \ ~— |2 e
. . . . ) . = 0.1 o, | £ ap-
more accurate at distant relationship inference. decreased accuracy for both IBD segment methods in comparison to KING 7 13- e
However, with increasing genotyping error (1-5%), with higher genotyping error. 02 BIS
methods that do not rely on IBD segment detection are 2 |
more robust and outperform IBD segment methods. :
Reduced call rate had little impact on either class of RMSE by population across different missingness and error levels ool maeman aany e o - Ce—-— \
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Fig 5: Difference between inferred kinship coefficient versus true

Conclusions: IBD segment methods are extremely
sensitive to genotyping error in forensic samples,
resulting in a large drop in accuracy compared with
non-IBD segment methods. This can result in missed
relationship identification in FGG when using low-
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RMSE on inferred vs simulated kinship coefficient

. . . 0.041 2 hap-18D simulated kinship coefficient for three different methods using default

quality/degraded samples results in genotyping error. o 2| M ke parameters at different error and missingness levels for simulated relationships

| 3 I 11 I I I 2o from GBR founders. Error increases in panels going left-to-right. Missing data
What’s next? We are currently conducting similar 0.0 M e - increase in panels top-to-bottom. Each point represents a pair of simulated
FGG methods benchmarking after low-pass whole 0061 individuals. Red=hap-IBD; green=KING; blue=IBIS.
genome sequencing (LPWGS) and imputation. 0.041 3

. 3 Tool Parameter |Description Selected |Total runs/tool

- . = . IBIS -mL Minimum size of IBD kept, cM |2,7
Paper (Frontlers n Genomlcs 2022) 0.00- . - . I = = I I I I I I -mt Min markers for IBD segment |64, 10, 2 12
doi.org/10.3389/fgene.2022.882268 A hap-IBD |min-output |Min output segment length  |2,7 .
min-markers | Min markers for IBD segment |100, 64
Fig 3: RMSE comparing the inferred versus simulated kinship. Panels

Software (skater R package); show genotyping error increasing in panels left-to-right, and missing data Table 1: Selected Parameters for IBD tools. The KING method does not
rates increasing in panels going top-to-bottom. Individual bars within each have parameters that can be tuned; however, IBIS and hap-IBD can be run

https://cran.r-project.org/package=skater panel show the classification accuracy within each simulated population with different settings to detect IBD segments within different constraints.

https://github.com/signaturescience/skater (ASW, GBR, and MXL). Permissive parameters were not able to rescue IBIS or hap-IBD performance

with high error rates.
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